Sprinkle Docs
  • What is Sprinkle?
  • Quick Start
  • Analysing your data
    • 🔭Analytics Overview
    • 💠Data Models
      • *️Variables
      • 🌲Hierarchies
      • 🤿Column Mask
    • 🎉Switch to New Reports & Dashboards
    • 🆕Reports
      • Overview
      • Build Using Tables
        • Create a new Report
        • Layout and options
        • Build and Format - Overview
        • Apply Row Limits
        • Identify Date Columns
        • Filter your data
        • Visualizations
          • Table
          • Pivot
          • Line Chart
          • Bar Chart
          • Column Chart
          • Area Chart
          • Combo Chart
          • Scatter & Bubble Plot
          • Pie Chart
          • Funnel Chart
          • Stat Card
          • Point Map
          • Heat Map
          • Radial gauge chart
        • Advanced Features
          • Custom Analysis
          • Variables
          • Table & Quick Calculations
          • Drill - Hierarchical & Date
          • Break Out
          • RLS in Table reports
          • Scheduled Exports
          • Embedding Table Reports
      • Build Using Models
        • Create a new report
        • Layout and options
        • Visualizations
        • Advanced Features
      • Build SQL Reports
        • Create a new Report
        • Layout and options
        • Writing a SQL Code on Editor
        • Visualizations
        • Variables in SQL Reports
    • 🆕Dashboards
      • 🌀Filters
      • 👆Click Behaviour
      • ⏰Data Alerts
      • 🗓️Date Drill
      • 📤Scheduled Exports
      • 🔗Embed link
      • 🖥️Dashboard layout
      • 📱Mobile Dashboards
  • Transforming your data
    • 🔰SQL Transform
    • 📓Python Notebooks
  • Integrating your data
    • ☁️Destination Warehouses
      • AWS Athena
        • Manage storage of Flow tables
      • AWS Redshift
      • Azure Synapse
      • Databricks
      • Google BigQuery
      • MySQL
      • Postgres
      • Snowflake
      • SQL Server
      • K8 Setup
        • AWS EKS
        • Google GKE
        • Azure AKS
    • ⚙️Warehouse & Storage Setup
  • Ingesting your data
    • ☄️Data Imports
      • Databases
        • Azure Cosmos DB
        • Azure Table Storage
        • Google BigQuery
        • Mongo DB
        • MySQL DB
        • Oracle DB
        • Postgres DB
        • SQL Server DB
        • Features
          • Ingestion Modes
          • Add Multiple Datasets
          • CDC Setup
            • CDC setup in Mysql
            • CDC setup in Postgres
            • CDC setup in Mongo
            • CDC setup in SQL Server
          • Destination Create Table Clause
          • SSH Tunnel Setup
      • Files
        • AWS S3
        • AWS S3 External
        • Azure Blob
        • FTP
        • Google Cloud Storage
        • Google Sheet
        • SFTP
      • Applications
        • Apple Search Ads
        • Appsflyer
        • Branch
        • Clevertap
        • Facebook Ads
        • Freshdesk
        • Freshsales
        • Google Ads
        • Google Ads V2
        • Google Analytics
        • Google Analytics 4
        • Google Analytics MCF
        • Google Search Console
        • Hubspot
        • Impact Ads
        • Intercom
        • Klaviyo
        • Leadsquared
        • LinkedIn Ads
        • Magento
        • Mailchimp
        • Marketo
        • Mixpanel
        • MoEngage
        • Rocketlane
        • Salesforce
        • SAP S4
        • Shopify
        • Snapchat Marketing
        • TikTok Ads
        • WooCommerce
        • Zendesk Chat
        • Zendesk Support
        • Zoho Analytics
        • Zoho Books
        • Zoho CRM
        • Zoho Desk
        • Zoho Invoice
        • Zoho Subscription
      • Events
        • Apache Kafka
        • AWS Kinesis
        • Azure EventHub
    • 📤File Uploads
    • 🤖API Pulls
    • 🕸️Webhooks
  • Collaborating on data
    • 📤Sharing
    • 💬Comments
    • ⚡Activity
    • 🏷️Labels
  • Managing Schedules and Data Refreshes
    • ⏱️Schedules
    • 🔔Notifications
  • User Management
    • 🔑Access Management
    • 🧑‍🤝‍🧑Groups
    • 📂Folders
    • 🔄Syncing users, groups and RLS
    • 📧Azure AD Integration
  • Data Security & Privacy
    • 🔐Security at Sprinkle
    • 📄GDPR
    • 📄Privacy Policy
  • Release Notes
    • 📢Release Notes
      • 🗒️Release Notes - v12.1 (New)
      • 🗒️Release Notes - v12.0
      • 🗒️Release Notes - v11.0
      • 🗒️Release Notes - v10.8
      • 🗒️Release Notes - v10.7
      • 🗒️Release Notes - v10.6
      • 🗒️Release Notes - v10.5
      • 🗒️Release Notes - v10.4
      • 🗒️Release Notes - v10.3
      • 🗒️Release Notes - v10.2
      • 🗒️Release Notes - v10.1
      • 🗒️Release Notes - v10.0
      • 🗒️Release Notes - v9.31
      • 🗒️Release Notes - v9.30
      • 🗒️Release Notes - v9.29
      • 🗒️Release Notes - v9.28
      • 🗒️Release Notes - v9.27
      • 🗒️Release Notes - v9.25
      • 🗒️Release Notes - v9.24
      • 🗒️Release Notes - v9.23
      • 🗒️Release Notes - v9.22
      • 🗒️Release Notes - v9.21
      • 🗒️Release Notes - v9.20
      • 🗒️Release Notes - v9.19
      • 🗒️Release Notes - v9.18
      • 🗒️Release Notes - v9.17
      • 🗒️Release Notes - v9.16
      • 🗒️Release Notes - v9.14
      • 🗒️Release Notes - v9.13
      • 🗒️Release Notes - v9.12
      • 🗒️Release Notes -v9.8
      • 🗒️Release Notes - v9.7
      • 🗒️Release Notes - v9.6
      • 🗒️Release Notes - v9.5
      • 🗒️Release Notes - v9.4
      • 🗒️Release Notes - v9.3
      • 🗒️Release Notes - v9.2
      • 🗒️Release Notes - v9.1
      • 🗒️Release Notes - v9.0 (Major)
      • 🗒️Release Notes - v7.23
      • 🗒️Release Notes - v7.21
      • 🗒️Release Notes - v7.20
      • 🗒️Release Notes - v7.15
      • 🗒️Release Notes - v7.14
      • 🗒️Release Notes - v7.13
Powered by GitBook
On this page
  • Data Import Concepts
  • Step by Step Guide
  • STEP-1: Configure Connection
  • STEP-2: Configure Datasource
  • STEP-3: Create Dataset
  • STEP-4: Run and schedule Ingestion
  • Advanced Connection Settings
  • Dataset Fields
  1. Ingesting your data
  2. Data Imports
  3. Applications

Google Analytics 4

Guide to integrate your Google Analytics 4 to Sprinkle

PreviousGoogle AnalyticsNextGoogle Analytics MCF

Last updated 1 year ago

Data Import Concepts

Before setting up the data import, learn about data import concepts

Step by Step Guide

STEP-1: Configure Connection

To learn about Connection, refer

  • Log into the Sprinkle application

  • Navigate to Ingest -> Connections Tab -> Setup Sources ->

  • Select Google Analytics 4

  • Provide all the mandatory details

    • Name: Name to identify this connection

    • Connect to Google

    • Advanced Settings: Refer

  • After pressing Connect to Google, you will see authorize screen to allow permissions required for sprinkle to read data. Press Allow

  • Test Connection

  • Create

STEP-2: Configure Datasource

  • Navigate to Ingest -> Data Imports Tab -> Setup Sources ->

  • Select Google Analytics 4

  • Provide the name -> Create

  • Choose from saved connections Tab:

    • From the drop-down, select the name of connection created in STEP-2

    • Next: Select Datasets

STEP-3: Create Dataset

  • Account Id (Required): GA Account

  • Properties/Apps (Required): Select Property/Apps available in this account

  • Metrics (Required): Select up to 10 metrics

  • Dimensions (Optional): Select up to 9 dimensions to aggregate your metrics on

  • Ingestion Mode (Required)

    • Snapshot: Every run will pull data from the start date

    • Incremental: Every run will pull data from the last successful run onwards

  • Start Date (Required): Pull the data from this date: Format is YYYY-MM-DD

  • Destination Schema (Required): Data warehouse schema where the table will be ingested into

  • Destination Table name (Required): It is the table name to be created on the warehouse. If not given, sprinkle will create like ds_<datasourcename>_<tablename>

  • Create

STEP-4: Run and schedule Ingestion

In the Run & Schedule tab:

  • Trigger the Job, using Run Now button

  • To schedule, enable Auto-Run. Change the frequency if required

Advanced Connection Settings

  • API Read Timeout (In seconds) : Maximum time of inactivity between two data packets when waiting for the server's response. The default value is 30 seconds.

  • API Connection Timeout (In seconds) : Time period within which a connection between a client and a server must be established.

  • Retry Limit : Number of retries allowed when an API call fails. For example if an API call fails and retry limit is 5 then it will check 5 times for that API call and if it succeeded then it will stop checking.

  • Retry Sleep Time (In milliseconds) : Given time, after which retry should happen in case an API call fails.

  • Incremental Batch Size (In days) : No. of days in one batch for which data is being downloaded during incremental ingestion.

  • Version : It gives information about the version of Google Analytics 4 API being used.

  • Max Records : Field sets the max limit on the number of records that can be downloaded during each API call.

Dataset Fields

User can pick following fields in datasets

  • active1DayUsers

  • active28DayUsers

  • active7DayUsers

  • activeUsers

  • addToCarts

  • adUnitExposure

  • averagePurchaseRevenue

  • averagePurchaseRevenuePerPayingUser

  • averagePurchaseRevenuePerUser

  • averageRevenuePerUser

  • averageSessionDuration

  • bounceRate

  • cartToViewRate

  • checkouts

  • cohortActiveUsers

  • cohortTotalUsers

  • conversions

  • crashAffectedUsers

  • crashFreeUsersRate

  • dauPerMau

  • dauPerWau

  • ecommercePurchases

  • engagedSessions

  • engagementRate

  • eventCount

  • eventCountPerUsereventsPerSession

  • eventValue

  • firstTimePurchaserConversionRate

  • firstTimePurchasers

  • firstTimePurchasersPerNewUser

  • itemListClickEvents

  • itemListClickThroughRate

  • itemListViewEvents

  • itemPromotionClickThroughRate

  • itemRevenue

  • itemsPurchased

  • itemViewEvents

  • newUsers

  • organicGoogleSearchAveragePosition

  • organicGoogleSearchClicks

  • organicGoogleSearchClickThroughRate

  • organicGoogleSearchImpressions

  • promotionClicks

  • promotionViews

  • publisherAdClicks

  • publisherAdImpressions

  • purchaserConversionRate

  • purchaseRevenue

  • purchaseToViewRate

  • screenPageViews

  • screenPageViewsPerSession

  • sessionConversionRate

  • sessions

  • sessionsPerUser

  • shippingAmount

  • taxAmount

  • totalAdRevenue

  • totalPurchasers

  • totalRevenue

  • totalUsers

  • transactions

  • transactionsPerPurchaser

  • userConversionRate

  • userEngagementDuration

  • wauPerMau

  • conversions:purchase

  • sessionConversionRate:purchase

  • userConversionRate:purchase

To learn about Data Imports, refer

Datasets Tab: To learn about Dataset, refer . Add Dataset for each report/dataset that you want to integrate, providing the following details

Dimensions Filter: Dimension filters allow you to ask for only specific dimension values in the report. To learn more, see for examples. Metrics cannot be used in this filter. Provide the object here like:- "dimensionFilter": { "filter": { "fieldName": "eventName", "stringFilter": { "value": "first_open" } } }

Metrics Filter: The filter clause of metrics. Applied after aggregating the report's rows, similar to SQL having-clause. To learn more, see . Dimensions cannot be used in this filter. Provide the object here like:- "metricFilter": { "filter": { "fieldName": "eventCount", "numericFilter": { "value": { "doubleValue": 2 } } } }

Destination Create Table Clause: Provide additional clauses to warehouse-create table queries such as clustering, partitioning, and more, useful for optimizing DML statements. on how to use this field.

☄️
here
here
Fundamentals of Dimension Filters
here
Learn more
here
here
here